1,110 research outputs found

    Light spin-1/2 or spin-0 Dark Matter particles

    Full text link
    We recall and precise how light spin-0 particles could be acceptable Dark Matter candidates, and extend this analysis to spin-1/2 particles. We evaluate the (rather large) annihilation cross sections required, and show how they may be induced by a new light neutral spin-1 boson U. If this one is vectorially coupled to matter particles, the (spin-1/2 or spin-0) Dark Matter annihilation cross section into e+e- automatically includes a v_dm^2 suppression factor at threshold, as desirable to avoid an excessive production of gamma rays from residual Dark Matter annihilations. We also relate Dark Matter annihilations with production cross sections in e+e- scatterings. Annihilation cross sections of spin-1/2 and spin-0 Dark Matter particles are given by exactly the same expressions. Just as for spin-0, light spin-1/2 Dark Matter particles annihilating into e+e- could be responsible for the bright 511 keV gamma ray line observed by INTEGRAL from the galactic bulge.Comment: 10 page

    Some Comments on an MeV Cold Dark Matter Scenario

    Get PDF
    We discuss several aspects of astroparticle physics pertaining to a new model with MeV cold dark matter particles, which annihilate to electron-positron pairs in a manner yielding the correct CDM density required today, and explaining the enhanced electron-positron annihilation line from the center of the Galaxy. We note that the mass of the vector meson mediating the annihilations, should exceed the mass of CDM particle, and comment on possible enhancement due to CDM clustering, on the detectability of the new CDM, and on particle physics models incorporating this scenario.Comment: 13 pages, 2 figures. v2 - Added some remarks regarding a more stringent mass bound. References added, some typos corrected. v3 - Added a comment regarding the invalidity of perturbative calculation in the case of a very small coupling g'. Removed the comment regarding the smallness of the angular width of the 511 keV lin

    Constraints on the parity-violating couplings of a new gauge boson

    Get PDF
    High-energy particle physics experiments allow for the possible existence of a new light, very weakly coupled, neutral gauge boson (the U boson). This one permits for light (spin-1/2 or spin-0) particles to be acceptable Dark Matter candidates, by inducing sufficient (stronger than weak) annihilation cross sections into e+e-. They could be responsible for the bright 511 keV gamma ray line observed by INTEGRAL from the galactic bulge. Such a new interaction may have important consequences, especially at lower energies. Parity-violation atomic-physics experiments provide strong constraints on such a U boson, if its couplings to quarks and electrons violate parity. With the constraints coming from an unobserved axionlike behaviour of this particle, they privilegiate a pure vector coupling of the U boson to quarks and leptons, unless the corresponding symmetry is broken sufficiently above the electroweak scale.Comment: 6 page

    Probing the SUSY breaking scale at an eee^-e^- collider

    Get PDF
    If supersymmetry is spontaneously at a low energy scale then the resulting gravitino would be very light. The interaction strength of the longitudinal components of such a light gravitino to electron-selectron pair then becomes comparable to that of electroweak interactions. Such a light gravitino could modify the cross-section for e^_L e^_R-->\tilde {e}_L\tilde {e}_R from its MSSM value. Precision measurement of this cross-section could therefore be used to probe the low energy SUSY breaking scale.Comment: Plain Tex, 7 pages, No figure

    Constraints on Light Dark Matter and U bosons, from psi, Upsilon, K+, pi0, eta and eta' decays

    Full text link
    Following searches for photinos and very light gravitinos in invisible decays of psi and Upsilon, we discuss new limits on Light Dark Matter and U bosons, from psi and Upsilon decays, as well as rare decays of K+ and invisible decays of pi0, eta and eta' ... . The new limits involving the vector couplings of the U to quarks turn out, not surprisingly, to be much less restrictive than existing ones on axial couplings, from an axionlike behavior of a light U boson, tested in psi --> gamma U, Upsilon --> gamma U and K+ --> pi+ U decays (or as compared to the limit from parity-violation in atomic physics, in the presence of an axial coupling to the electron). Altogether the hypothesis of light U bosons, and light dark matter particles, remains compatible with particle physics constraints, while allowing for the appropriate annihilation cross sections required, both at freeze-out (for the relic abundance) and nowadays (if e+ from LDM annihilations are at the origin of the 511 keV line from the galactic bulge).Comment: 8 page

    Supersymmetry and Gauge Invariance Constraints in a U(1)×\times U(1)^{\prime }-Higgs Superconducting Cosmic String Model

    Full text link
    A supersymmetric extension of the U(1)×U(1)U(1)\times U(1)^{\prime }-Higgs bosonic superconducting cosmic string model is considered,and the constraints imposed upon such a model due to renormalizability, supersymmetry, and gauge invariance are examined. For a simple model with a single U(1)U(1) chiral superfield and a single % U(1)^{\prime } chiral superfield, the Witten mechanism for bosonic superconductivity (giving rise to long range gauge fields outside of the string) does not exist. The simplest model that can accommodate the requisite interactions requires five chiral supermultiplets. This superconducting cosmic string solution is investigated.Comment: 17 pages, revtex, no figures; to appear in Phys. Rev.

    Integral and Light Dark Matter

    Full text link
    The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter particle at variance with the neutralino, in general considered as very heavy. We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π\pi^\circ decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson UU. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter.Comment: 7 pages, 0 figures. To appear in the Proceedings of the 5th INTEGRAL Workshop: "The INTEGRAL Universe", February 16-20, 2004, Munich, German

    Testing the equivalence principle: why and how?

    Full text link
    Part of the theoretical motivation for improving the present level of testing of the equivalence principle is reviewed. The general rationale for optimizing the choice of pairs of materials to be tested is presented. One introduces a simplified rationale based on a trichotomy of competing classes of theoretical models.Comment: 11 pages, Latex, uses ioplppt.sty, submitted to Class. Quantum Gra
    corecore